DW SHEET ${ }^{\circ}{ }^{\circ} 2$
 VECTOR CALCULATION

Exercise1

In repere $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$, we give the two vectors $\overrightarrow{\boldsymbol{V}}_{1}=\overrightarrow{\boldsymbol{\imath}}+2 \overrightarrow{\boldsymbol{\jmath}}+3 \overrightarrow{\boldsymbol{k}}$ et $\overrightarrow{\boldsymbol{V}}_{2}=2 \overrightarrow{\boldsymbol{\imath}}-2 \overrightarrow{\boldsymbol{\jmath}}+3 \overrightarrow{\boldsymbol{k}}$.

- graphically represent these two vectors and calculate their modules.
- Calculate $\vec{S}=\overrightarrow{\boldsymbol{V}}_{1}+\overrightarrow{\boldsymbol{V}}_{2}$ et $\overrightarrow{\boldsymbol{D}}=\overrightarrow{\boldsymbol{V}}_{1}-\overrightarrow{\boldsymbol{V}}_{2}$.
- Find the directing cosines of the direction of $\overrightarrow{\boldsymbol{S}}$.
- Calculate the Scalar product $\overrightarrow{\boldsymbol{V}}_{1}, \overrightarrow{\boldsymbol{V}}_{2}$ and the angle between $\overrightarrow{\boldsymbol{V}}_{1}$ et $\overrightarrow{\boldsymbol{V}}_{2}$.
- Calculate the vector product $\overrightarrow{\boldsymbol{V}_{\mathbf{1}}} \wedge \overrightarrow{\boldsymbol{V}_{\mathbf{2}}}$.
- Determine the unit vector perpendicular to the plane $\left(\overrightarrow{\boldsymbol{V}_{\mathbf{1}}}, \overrightarrow{\boldsymbol{V}_{2}}\right)$.

Exercise 2

Let $(\vec{\imath}, \vec{\jmath}, \vec{k})$, be the unit vectors of the rectangular axes Oxyz, we consider the vectors : $\overrightarrow{r_{1}}(2,3,-1), \overrightarrow{r_{2}}(3,-2,2), \overrightarrow{r_{3}}(4,0,3)$

1) Calculate their modules
2) Calculate the components and modules of the vectors
$\vec{A}=\overrightarrow{r_{1}}+\overrightarrow{r_{2}}-\overrightarrow{r_{3}}$ and $\vec{B}=\overrightarrow{r_{1}}-2 \overrightarrow{r_{2}}$
3) Determine the unit vector \vec{u} carried by the vector \vec{A}, what are called the components of the unit vector of A
4) Calculate $\overrightarrow{r_{1}} \wedge \overrightarrow{r_{2}}$ and $\overrightarrow{r_{2}} \cdot \overrightarrow{r_{3}}$, deduce the area of the triangle formed by the three vectors $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\overrightarrow{r_{3}}$.
5) Calculate the products $\vec{A} \cdot(\vec{B} \wedge \vec{C})$ et $\vec{A} \wedge(\vec{B} \wedge \vec{C})$

Exercise 3

We give the three vectors: $\left\{\begin{array}{c}\vec{A}=3 \vec{i}-\overrightarrow{4 j} \\ \vec{B}=2 \overrightarrow{\vec{i}}+3 \vec{k} \\ \vec{C}=\vec{i}+2 \vec{j}-2 \vec{k}\end{array}\right.$
We ask :

1) What is the angle between \vec{A} and \vec{B}
2) Calculate the directing cosines of the vector \vec{C} and indicate the angles that makes \vec{C} with the three axes
3) The length of the projection of \vec{B} on \vec{C}.

Exercise 4

1- Determine the value of the number a for which the vectors

$$
\overrightarrow{V_{1}}=2 \vec{\imath}+a \vec{\jmath}+\vec{k} \text { et } \overrightarrow{V_{2}}=-4 \vec{\imath}-2 \vec{\jmath}-2 \vec{k} \text { be: }
$$

a- perpendicular.
b- Parallels
c- $\left(\overrightarrow{V_{1}} \wedge \overrightarrow{V_{2}}\right) \cdot \vec{k}=1$
2- let $\mathrm{C}(\alpha, 1 / 3,1 / 2)$ be a point in space, where α is a real number. Under what condition is the $(\overrightarrow{O C})$ a unitary vector.

DW SHEET ${ }^{\circ}{ }^{\circ} 2$
 VECTOR CALCULATION

Exercise 5

In a landmark $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$, direct
orthonormal, we consider a vector $\vec{U}=\overrightarrow{O A}$ which makes an angle α with the axis $(O, \vec{\imath})$ and an angle β with the axis (O, \vec{J})
(Figure opposite).
1- the vector \vec{U} as a function of α, the module U and the unit vectors $\vec{\imath}$ and $\vec{\jmath}$ 2 - as a function of β, the module U and the unit vectors $\vec{\imath}$ and $\vec{\jmath}$
3- Same questions of 1 and 2 if by making
 a rotation in the positive direction along the axis (O, \vec{K}) of $\frac{\pi}{2}$.

Exercise 6

In an orthonormal reference (Oxyz) of unit vector $(\vec{\imath}, \vec{\jmath}, \vec{k})$, we consider the vector:
$\vec{V}=-2 \vec{\imath}+3 \vec{\jmath}+\vec{K}$ whose support passes through the point $A(3,-2,2)$.
1- Calculate its moment relatively to an axis (Δ) of unit vector $\overrightarrow{U_{\Delta}}\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and which passes through the point O .
2- Calculate its moment with respect to the point $B(2,1,0)$.
3- Calculate its moment with respect to an axis (Δ^{\prime}) which passes through the point B and parallel to (Δ).

Exercise 7 (Home work)

Let be the following vectors $\overrightarrow{U_{1}}=A_{1} \vec{\imath}+A_{2} \vec{\jmath}+A_{3} \vec{k}$ and $\overrightarrow{U_{2}}=B_{1} \vec{\imath}+B_{2} \vec{\jmath}+B_{3} \vec{k}$
1- Calculate scalars products $\overrightarrow{U_{1}} \cdot \overrightarrow{U_{1}}, \overrightarrow{U_{1}} \cdot \overrightarrow{U_{2}}$ and $\overrightarrow{U_{2}} \cdot \overrightarrow{U_{2}}$
2- We give $\overrightarrow{V_{1}}=2 \vec{\imath}-\vec{\jmath}+5 \vec{k}, \overrightarrow{V_{2}}=-3 \vec{\imath}+1.5 \vec{\jmath}-7.5 \vec{k}$ and $\overrightarrow{V_{3}}=-5 \vec{\imath}+4 \vec{\jmath}+\vec{k}$
3- Calculate $\overrightarrow{V_{1}} \cdot \overrightarrow{V_{2}}$ and $\overrightarrow{V_{1}} \Lambda \overrightarrow{V_{2}}$
4- Without making the graphic representation, what can we say about the meaning and direction of the vecteur $\overrightarrow{V_{2}}$ with respect to $\overrightarrow{V_{1}}$
5- Calculate the following products $\overrightarrow{V_{1}} \cdot\left(\overrightarrow{V_{2}} \Lambda \overrightarrow{V_{3}}\right)$ et $\overrightarrow{V_{1}} \Lambda\left(\overrightarrow{V_{2}} \Lambda \overrightarrow{V_{3}}\right)$
6- Determine the surface of the triangle formed by the vectors $\overrightarrow{V_{2}}$ and $\overrightarrow{V_{3}}$.

Exercise 8

The following vectors are considered:
$\overrightarrow{V_{1}}=\sin t \vec{\imath}-\cos t \vec{\jmath}+3 t \vec{K}, \overrightarrow{V_{2}}=\cos t \vec{\imath}-\sin t \vec{\jmath}$
Calculate $\frac{d\left(\overrightarrow{V_{1}} \cdot \overrightarrow{V_{2}}\right)}{d t}, \frac{d\left(\overrightarrow{V_{1}} \wedge \overrightarrow{V_{2}}\right)}{d t}$

