Department of Earth Sciences

Level L1 DW SHEET N°2 VECTOR CALCULATION

Exercise1

In repere $(0, \vec{i}, \vec{j}, \vec{k})$, we give the two vectors $\vec{V}_1 = \vec{i} + 2\vec{i} + 3\vec{k}$ et $\vec{V}_2 = 2\vec{i} - 2\vec{i} + 3\vec{k}$.

- graphically represent these two vectors and calculate their modules.
- Calculate $\vec{S} = \vec{V}_1 + \vec{V}_2$ et $\vec{D} = \vec{V}_1 \vec{V}_2$.
- Find the directing cosines of the direction of \vec{S} .
- Calculate the Scalar product \vec{V}_1 . \vec{V}_2 and the angle between \vec{V}_1 et \vec{V}_2 .
- Calculate the vector product $\overrightarrow{V_1} \wedge \overrightarrow{V_2}$.
- Determine the unit vector perpendicular to the plane $(\overrightarrow{V_1}, \overrightarrow{V_2})$.

Exercise 2

Let $(\vec{i}, \vec{j}, \vec{k})$, be the unit vectors of the rectangular axes Oxyz, we consider the vectors: $\overrightarrow{r_1}(2,3,-1)$, $\overrightarrow{r_2}(3,-2,2)$, $\overrightarrow{r_3}(4,0,3)$

- 1) Calculate their modules
- 2) Calculate the components and modules of the vectors

$$\vec{A} = \vec{r_1} + \vec{r_2} - \vec{r_3}$$
 and $\vec{B} = \vec{r_1} - 2\vec{r_2}$

- 3) Determine the unit vector \vec{u} carried by the vector \vec{A} , what are called the components of the unit vector of A
- **4)** Calculate $\overrightarrow{r_1} \wedge \overrightarrow{r_2}$ and $\overrightarrow{r_2} \cdot \overrightarrow{r_3}$, deduce the area of the triangle formed by the three vectors $\overrightarrow{r_1}$, $\overrightarrow{r_2}$ and $\overrightarrow{r_3}$.
- **5**) Calculate the products $\vec{A} \cdot (\vec{B} \wedge \vec{C})$ et $\vec{A} \wedge (\vec{B} \wedge \vec{C})$

Exercise 3

We give the three vectors:

$$\begin{cases} \vec{A} = 3\vec{i} - 4\vec{j} \\ \vec{B} = 2\vec{i} + 3\vec{k} \\ \vec{C} = \vec{i} + 2\vec{j} - 2\vec{k} \end{cases}$$

We ask:

- 1) What is the angle between \vec{A} and \vec{B}
- 2) Calculate the directing cosines of the vector \vec{C} and indicate the angles that makes \vec{C} with the three axes
- 3) The length of the projection of \vec{B} on \vec{C} .

Exercise 4

1- Determine the value of the number a for which the vectors

$$\overrightarrow{V_1} = 2\overrightarrow{\imath} + a\overrightarrow{\jmath} + \overrightarrow{k}$$
 et $\overrightarrow{V_2} = -4\overrightarrow{\imath} - 2\overrightarrow{\jmath} - 2\overrightarrow{k}$ be:

- a- perpendicular.
- **b-** Parallels
- $\mathbf{c} \cdot \left(\overrightarrow{V_1} \wedge \overrightarrow{V_2} \right) \cdot \overrightarrow{k} = 1$
- **2-** let C (α ,1/3, 1/2) be a point in space, where α is a real number. Under what condition is the (\overrightarrow{OC}) a unitary vector.

Faculty of Earth and Universe Sciences

Department of Earth Sciences

Level L1
DW SHEET N°2

VECTOR CALCULATION

Exercise 5

In a landmark $(0, \vec{t}, \vec{j}, \vec{k})$, direct orthonormal, we consider a vector $\vec{U} = \overrightarrow{OA}$ which makes an angle α with the axis $(0, \vec{t})$ and an angle β with the axis $(0, \vec{f})$ (Figure opposite).

1- the vector \vec{U} as a function of α , the module U and the unit vectors \vec{i} and \vec{j}

2- as a function of β , the module U and the unit vectors \vec{i} and \vec{j}

3- Same questions of 1 and 2 if by making a rotation in the positive direction along the axis $(0, \vec{K})$ of $\frac{\pi}{2}$.

Exercise 6

In an orthonormal reference (Oxyz) of unit vector $(\vec{i}, \vec{j}, \vec{k})$, we consider the vector: $\vec{V} = -2\vec{i} + 3\vec{j} + \vec{K}$ whose support passes through the point A(3, -2, 2).

- 1- Calculate its moment relatively to an axis (Δ) of unit vector $\overrightarrow{U_{\Delta}}(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ and which passes through the point O.
- **2-** Calculate its moment with respect to the point B(2,1,0).
- **3-** Calculate its moment with respect to an axis (Δ ') which passes through the point B and parallel to (Δ).

Exercise 7 (Home work)

Let be the following vectors $\overrightarrow{U_1} = A_1 \vec{i} + A_2 \vec{J} + A_3 \vec{k}$ and $\overrightarrow{U_2} = B_1 \vec{i} + B_2 \vec{J} + B_3 \vec{k}$

- 1- Calculate scalars products $\overrightarrow{U_1}.\overrightarrow{U_1}$, $\overrightarrow{U_1}.\overrightarrow{U_2}$ and $\overrightarrow{U_2}.\overrightarrow{U_2}$
- 2- We give $\overrightarrow{V_1}=2\overrightarrow{\imath}-\overrightarrow{J}+5\overrightarrow{k}$, $\overrightarrow{V_2}=-3\overrightarrow{\imath}+1.5\overrightarrow{J}-7.5\overrightarrow{k}$ and $\overrightarrow{V_3}=-5\overrightarrow{\imath}+4\overrightarrow{J}+\overrightarrow{k}$
- 3- Calculate $\overrightarrow{V_1}$. $\overrightarrow{V_2}$ and $\overrightarrow{V_1} \wedge \overrightarrow{V_2}$
- 4- Without making the graphic representation, what can we say about the meaning and direction of the vecteur $\overrightarrow{V_2}$ with respect to $\overrightarrow{V_1}$
- 5- Calculate the following products $\overrightarrow{V_1}$. $(\overrightarrow{V_2} \Lambda \overrightarrow{V_3})$ et $\overrightarrow{V_1} \Lambda (\overrightarrow{V_2} \Lambda \overrightarrow{V_3})$
- 6- Determine the surface of the triangle formed by the vectors $\overrightarrow{V_2}$ and $\overrightarrow{V_3}$.

Exercise 8

The following vectors are considered:

$$\overrightarrow{V_1} = sint \ \overrightarrow{i} - cost \ \overrightarrow{j} + 3t \ \overrightarrow{K}, \overrightarrow{V_2} = cost \ \overrightarrow{i} - sint \ \overrightarrow{j}$$

Calculate
$$\frac{d(\overrightarrow{V_1}\overrightarrow{V_2})}{dt}$$
, $\frac{d(\overrightarrow{V_1}\wedge\overrightarrow{V_2})}{dt}$

A.CHERIET