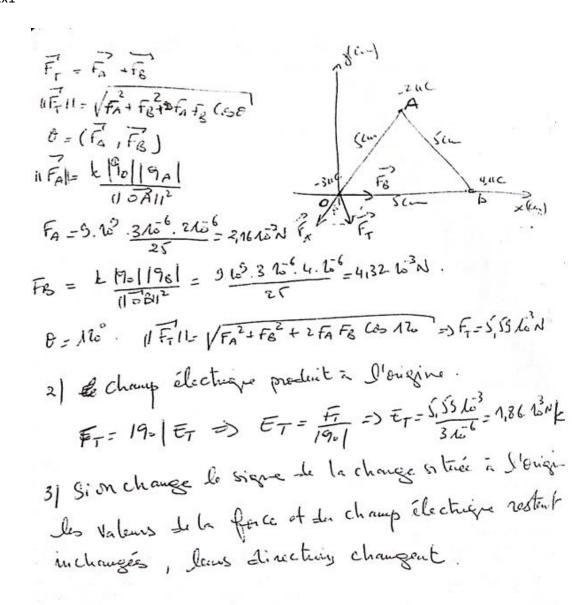
Ex1



Al'équilibre. -> 9A = 9/2 et 9c= 9/2

 $\begin{aligned} ||F_{A\to c}|| &= \frac{1}{4\pi\xi} \frac{9_A 9_C}{||A\hat{c}||^2} \quad \text{avec } ||A\hat{c}|| = \kappa \quad \text{et} \quad 9_A = 9/2 \\ ||F_B|_C || &= \frac{1}{4\pi\xi} \frac{9_B 9_C}{||B\hat{c}||^2} \quad \text{avec} \, ||B\hat{c}|| = d - \kappa \quad \text{et} \quad 9_c = 9/2 \\ \implies F_{AC} &= \frac{1}{4\pi\xi} \frac{9^2/u}{\pi^2} \quad \text{et} \quad F_{BC} = \frac{1}{4\pi\xi} \frac{9^2}{(d - \kappa)^2} \end{aligned}$

+ l'équilibre $F_{AC} = F_{BC} \Rightarrow \frac{1}{4\pi \zeta_{L}} \frac{9^{2}/4}{\pi^{2}} = \frac{1}{4\pi \zeta_{L}} \frac{(9^{2}-1)^{2}}{(9^{2}-1)^{2}}$ $\Rightarrow (d-n^{2}) = 4\pi^{2}$

 $\Rightarrow (d-n^2) = 4n^2$ $\Rightarrow (d-n^2) = 4n^2 \Rightarrow 3n^2 + 2dn - d^2 = 0$ $\Rightarrow 0 = 4d^2 + 12d^2 = 16d^2 \Rightarrow n = -2d+4d \Rightarrow n = \frac{0}{3}$ $= 2/Relation entre 9 et 9 pour que c retrouve Son équilibre au milieu de AR <math>\Rightarrow x = \frac{0}{2}$

 $F_{AC} = \frac{1}{4\pi g} \frac{9_{A}9_{C}}{AC^{2}}, \quad F_{BC} = \frac{1}{4\pi g} \frac{9_{B}9_{C}}{BC}$ $F_{AC} = F_{BC} \Rightarrow \frac{9_{A}9_{C}}{AC^{2}} = \frac{9_{B}9_{C}}{BC^{2}}$ Comme $9_{A} = 9/2$, $9_{B} = 9$ et AC = BC = 3/2 $\Rightarrow 9 = 9/2$

d'un coté ona:
$$t_0 \theta = \frac{f}{f}$$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 \pi^2 mg}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 \pi^2 mg}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 \pi^2 mg}$
 $t_0 \theta = \frac{g^2}{2l}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 \pi^2 mg}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 \pi g}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 \pi g}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 mg}$
 $t_0 \theta = \frac{g^2}{4\pi \xi_0 mg}$