Exercice 1

In a landmark $(0, \vec{\imath}, \vec{\jmath}, \vec{k})$, we consider the 4 moving parts $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D which are defined by their position vectors. $\overrightarrow{O A}=\left\{\begin{array}{l}x=t \\ y=\frac{t}{\sqrt{3}}\end{array} \quad, \overrightarrow{O B}=\left\{\begin{array}{l}x=3 t-1 \\ y=9 t^{2}+1\end{array} \quad, \overrightarrow{O C}=\left\{\begin{array}{c}x=10+10 \cos t \\ y=10 \sin t\end{array}, \overrightarrow{O D}=\right.\right.\right.$ $\left\{\begin{array}{c}x=t+1 \\ y=2+\sqrt{4-t^{2}}\end{array}\right.$

1- Determine the equation of the trajectory.

Exercice 2

We consider the material point of mass $\mathrm{m}=3 \mathrm{~kg}$, its coordinates in a landmark $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ are : $\mathrm{M}\left(-2, \mathrm{t}-1,1-\mathrm{t}^{2}\right)$, give :

1- Its position vector.
2- The coordinates of the velocity \vec{v} and its modulus.
3- The components of the acceleration vector \vec{a} and its modulus.
4- The angle θ between \vec{v} and \vec{a}, specify its value at $\mathrm{t}=2 \mathrm{~s}$.
5- The unit vector tangent to the trajectory \vec{U}_{T}
6- The projection of \vec{a} on the axis tangent to the trajectory T, that what it represents?
7- The components of $\overrightarrow{a_{T}}$
8- The normal acceleration and the radius of curvature.
9- The force \vec{F} acting on the material point M and its moment with respect to the origin.

Exercice 3 (Homework)

Let M be a particle of space that describes a motion defined by : $\mathrm{M}=2 \mathrm{t} \vec{\imath}+4 \mathrm{t}(\mathrm{t}-1) \vec{\jmath}$.
1- Determine the equation of the trajectory of M and deduce its nature.
2- Calculate the velocity of M at the instant t.
3- Show that the movement has a constant acceleration of which we will determine the tangential and normal components.

Exercice 4

We consider the material point of mass $m=3 \mathrm{~kg}$, moves in space according to the following law in the landmark
$(0, \vec{\imath}, \vec{\jmath}, \vec{k})$
$\left\{\begin{array}{c}x=R \cos \omega t \\ y=R \sin w t \\ z=a t\end{array}\right.$
Where R, w and a are constants
Let m_{1} be the projection of M on the plane (xoy).
1- What is the nature of the trajectory of m in the plane (xoy).).

2- What is the nature of the motion of M on the axis (OZ).
3- The coordinates of the velocity \vec{v} and its modulus.
4- The coordinates of the acceleration vector \vec{a} and its
modulus.
5- Calculate the tangential acceleration a_{T} and normal a_{N}.

Exercice 5

The plane is relative to an orthonormal reference xoy of origin O and the basis $(\vec{\imath}, \vec{\jmath})$, the coordinates x and y of a moving point M in the plane $(O, \vec{\imath}, \vec{\jmath})$ vary with time according to the law :

$$
\overrightarrow{O M}=\left\{\begin{array}{l}
x=2 \cos \frac{t}{2} \\
y=2 \sin \frac{t}{2}
\end{array}\right.
$$

Determine:
1- The nature of the trajectory.
2- The components of the velocity vector.
3- The curvilinear abscissa S of the point M at the instant t, taking as initial condition $\mathrm{S}=0$ when $\mathrm{t}=0$.
4- the normal and tangential components of the acceleration and deduce the radius of curvature of the trajectory.

.Exercice 6

In a reference \mathfrak{R}, a point M moves in a plane with a given acceleration as a function of time by the following expression: $\vec{\gamma}(M)=\alpha \vec{\tau}+\beta t^{2}$

Where τ and n are the unit vectors of the Frenet trihedron and α and β are positive constants and t time. It is assumed that at the instant $t=0$, the particle is at rest.

1- Give the dimensions of α and β.
2- Determine $s(t)$ the curvilinear abscissa of the point M knowing that $s(t=0)=0$.
3- Demonstrate that the expression for the radius of curvature of the trajectory is given $\operatorname{by} R c=\alpha^{2} / \beta$.

