Exercice 1

In a landmark $(0,\vec{\imath},\vec{j},\vec{k})$, we consider the 4 moving parts A,B,C and D which are defined by their

Level L1 -

position vectors.
$$\overrightarrow{OA} = \begin{cases} x = t \\ y = \frac{t}{\sqrt{3}} \end{cases}$$
, $\overrightarrow{OB} = \begin{cases} x = 3t - 1 \\ y = 9t^2 + 1 \end{cases}$, $\overrightarrow{OC} = \begin{cases} x = 10 + 10 \cos t \\ y = 10 \sin t \end{cases}$, $\overrightarrow{OD} = \begin{cases} x = t + 1 \\ y = 2 + \sqrt{4 - t^2} \end{cases}$

1- Determine the equation of the trajectory.

Exercice 2

We consider the material point of mass m=3 kg, its coordinates in a landmark $(0,\vec{\imath},\vec{j},\vec{k})$ are: M(-2,t-1,1-t²), give:

- 1- Its position vector.
- 2- The coordinates of the velocity \vec{v} and its modulus.
- 3- The components of the acceleration vector \vec{a} and its modulus.
- 4- The angle θ between \vec{v} and \vec{a} , specify its value at t=2s.
- 5- The unit vector tangent to the trajectory \vec{U}_T
- 6- The projection of \vec{a} on the axis tangent to the trajectory T, that what it represents?
- 7- The components of $\overrightarrow{a_T}$
- 8- The normal acceleration and the radius of curvature.
- 9- The force \vec{F} acting on the material point M and its moment with respect to the origin.

Exercice 3 (Homework)

Let M be a particle of space that describes a motion defined by : $M = 2t \vec{i} + 4t(t-1)\vec{j}$.

- 1- Determine the equation of the trajectory of M and deduce its nature.
- **2-** Calculate the velocity of M at the instant t.
- **3-** Show that the movement has a constant acceleration of which we will determine the tangential and normal components.

Exercice 4

We consider the material point of mass m = 3 kg, moves in space according to the following law in the landmark

$$\begin{cases}
(O, \vec{i}, \vec{j}, \vec{k}) \\
x = R \cos wt \\
y = R \sin wt \\
z = at
\end{cases}$$

Where R, w and a are constants Let m_1 be the projection of M on the plane (xoy).

- **1-** What is the nature of the trajectory of m in the plane (xoy).).
- **2-** What is the nature of the motion of M on the axis (OZ).
- 3- The coordinates of the velocity \vec{v} and its modulus.
- **4-** The coordinates of the acceleration vector \vec{a} and its

modulus.

5- Calculate the tangential acceleration a_T and normal a_N .

Exercice 5

The plane is relative to an orthonormal reference xoy of origin O and the basis (\vec{i}, \vec{j}) , the coordinates x and y of a moving point M in the plane $(0, \vec{i}, \vec{j})$ vary with time according to the law:

$$\overrightarrow{OM} = \begin{cases} x = 2\cos\frac{t}{2} \\ y = 2\sin\frac{t}{2} \end{cases}$$

Determine:

- **1-** The nature of the trajectory.
- **2-** The components of the velocity vector.
- **3-** The curvilinear abscissa S of the point M at the instant t, taking as initial condition S=0 when t=0.
- **4-** the normal and tangential components of the acceleration and deduce the radius of curvature of the trajectory.

.Exercice 6

In a reference \Re , a point M moves in a plane with a given acceleration as a function of time by the following expression: $\vec{\gamma}(M) = \alpha \vec{\tau} + \beta t^2$

Where τ and n are the unit vectors of the Frenet trihedron and α and β are positive constants and t time. It is assumed that at the instant t = 0, the particle is at rest.

- **1-** Give the dimensions of α and β .
- **2-** Determine s(t) the curvilinear abscissa of the point M knowing that s(t=0)=0.
- **3-** Demonstrate that the expression for the radius of curvature of the trajectory is given by $Rc = \alpha^2/\beta$.