University Of Oran - 2 Academic year 2023-2024 Faculty of Earth and Universe Sciences Department of Earth Sciences - Level L1 DIMENSIONAL EQUATIONS, UNITS AND UNCERTAINTIES

Exercise 1

1- Establish the dimensions and units of the following quantities:

Angular velocity ($\dot{\alpha}$), angular acceleration ($\ddot{\alpha}$), work(w), kinetic energy(Ec), power(P), gravity constant (g), pressure(p_r), amount of movement(P_Q).

2- Give the dimensions as well as the SI units

a- The permittivity of the vacuum, ε which appears in the expression of the electrical interaction force (Coulomb's law),

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{\mathbf{q}\mathbf{q}'}{\mathbf{r}^2}$$

b- The dimension of G which appears in the this expression. Two point masses m and m' attract each other according to Newton's law of attraction,

$$\mathbf{F} = \mathbf{G}.\frac{\mathbf{m}\mathbf{m}'}{\mathbf{r}^2}$$

c- of α , β and γ in the following relation:

$$\left(A + \frac{\alpha}{V^2}\right)(V - \beta) = \gamma T$$

The unit of A is $(dyne/cm^2)$, V is the volume and T is the temperature

Exercise 2

A sphere of radius R and density ρ Progressing in a liquid of Viscosity coefficient η with a speed V, $V = \frac{2}{9} R^2 g\left(\frac{\rho - \alpha}{\eta}\right)$, g being the Earth's acceleration

- **a** Determine the dimensions of η and α .
- **b-** What is the unit of η and α in CGSA and MKSA.

Exercise 3

The period T of a pendulum, formed by a ball of radius R, attached by a wire of length L, is given by the relation: $T = \frac{KR^2}{n}$.

Where K is dimensionless constant,

 η : air viscosity coefficient whose unit is (kg.m⁻¹ s⁻¹) and b: density of the ball. Find the dimension of T.

1- What is its unit in the international system (MKSA)?

The period T of a simple pendulum of mass m and length L can be put in the form: (T= $A.g^{x}.L^{y}.m^{z}$), g being the acceleration of gravity and has a dimensionless constant.

2- Deduce the expression of T.

Exercise 4

Check the homogeneity of the following expressions:

Here are three hourly equations describing the movement of an object in which: x designates the distance traveled, v the speed, a the acceleration, t the time

$$x = v\sqrt{t} \qquad x = vt + \frac{1}{2}at^2 \qquad x = vt + 2at^2$$

Here are three expressions for the period of revolution of a satellite orbiting the planet Mercury where m represents the mass of mercury and r the radius of the circular orbit of the satellite

$$T = 2\pi \sqrt{\frac{r}{Gm}}$$
 $T = 2\pi \sqrt{\frac{Gm}{r^3}}$ $T = 2\pi \sqrt{\frac{r}{Gm}^3}$

Determine by the dimensional analysis method the correct expression for the period, knowing that G has the dimension $L^3 M^{-1} T^{-2}$.

Exercise 5 (Work home)

Experience has shown that the speed v of sound in a gas is a function only of the density of the gas ρ and of its compressibility coefficient χ . It is given by $= k\rho^x \chi^y$. It is recalled that χ is homogeneous on the inverse of a pressure; k is a dimensionless constant. Determine the relationship of the speed of sound v.

Exercise 6

The moment of inertia I (its unit in the international system Kg $.m^2$) of a homogeneous tube with respect to its axis is given by the following relation

$$I = \frac{1}{12} \rho^{\alpha} . x. y^{\beta} . z. [x^2 + y^{\gamma}]$$

x represents the length of the tube, y its width, z its thickness and ρ its density Determine the value of the exponents α , β and γ and give the final expression of the moment of inertia

What is the accuracy on I if $\frac{\Delta x}{x} = \frac{\Delta y}{y} = \frac{\Delta z}{z} = 10^{-3} et \frac{\Delta \rho}{\rho} = 10^{-2}$

Exercise 7

In order to find the average speed of a mobile on an air cushion table, a student measures the distance d traveled during a time interval t. he finds $d = (5.10\pm0.01)$ m et $t = (6.02\pm0.02)$ s. the uncertainties are independent.

- 1- What is the value of the velocity V as well as its absolute uncertainty ΔV ?
- 2- What is the real value of the momentum of the mobile (p = m.V), knowing that its mass is : $m = (0.711 \pm 0.002)$ kg.

Exercise 8

The torsion constant C of a metal wire of circular cross section (its unit in SI is kg.m²/s²) is

expressed as a function of its length l and its diameter d by the relation : $C = Y^a \frac{d^b}{l}$

Où Y is the torsion modulus (or Coulomb coefficient) characterizing the nature of the wire. Knowing that Y is homogeneous at a pressure.

- 1- Calculate the exponents a and b.et give the final expression of C.
- 2- Literally calculate the accuracy on C.

Exercise 9

The height H of a liquid of mass M contained in a cylinder of radius R is given by the relation: $H = \frac{2\sigma cos\alpha}{\rho.gR}$

Where α is the liquid-cylinder contact angle and ρ represents the density of the liquid and g the acceleration of gravity.

1. Find the dimension of the quantity $\boldsymbol{\sigma}.$

2. Find the expression for the relative uncertainty on σ as a function of ΔR ; Δg ; ΔM et $\Delta \alpha$.