DIMENSIONAL EQUATIONS, UNITS AND UNCERTAINTIES

Exercise 1

1- Establish the dimensions and units of the following quantities:
Angular velocity $(\dot{\alpha})$, angular acceleration ($\ddot{\alpha}$), work(w), kinetic energy (Ec), power (P), gravity constant (g), pressure $\left(p_{r}\right)$, amount of movement $\left(\mathrm{P}_{\mathrm{Q}}\right)$.

2- Give the dimensions as well as the SI units
a- The permittivity of the vacuum, ε which appears in the expression of the electrical interaction force (Coulomb's law),

$$
\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{qq}^{\prime}}{\mathrm{r}^{2}}
$$

b- The dimension of G which appears in the this expression. Two point masses m and m^{\prime} attract each other according to Newton's law of attraction,

$$
\mathbf{F}=\mathbf{G} \cdot \frac{\mathbf{m} \mathbf{m}^{\prime}}{\mathbf{r}^{2}}
$$

$\mathbf{c}-$ of α, β and γ in the following relation:

$$
\left(A+\frac{\alpha}{\mathbf{V}^{2}}\right)(\mathbf{V}-\beta)=\gamma \mathbf{T}
$$

The unit of A is $\left(d y n e / \mathrm{cm}^{2}\right), \mathrm{V}$ is the volume and T is the temperature

Exercise 2

A sphere of radius R and density ρ Progressing in a liquid of Viscosity coefficient η with a speed $V, V=\frac{2}{9} R^{2} g\left(\frac{\rho-\alpha}{\eta}\right)$, g being the Earth's acceleration
a- Determine the dimensions of η and α.
b- What is the unit of η and α in CGSA and MKSA.

Exercise 3

The period T of a pendulum, formed by a ball of radius R, attached by a wire of length L, is given by the relation: $T=\frac{K R^{2}}{\eta}$.
Where K is dimensionless constant,
η : air viscosity coefficient whose unit is $\left(\mathrm{kg} \cdot \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$ and b : density of the ball. Find the dimension of T .
1- What is its unit in the international system (MKSA)?
The period T of a simple pendulum of mass m and length L can be put in the form: $(T=$ A. $g^{x} \cdot L^{y} \cdot m^{z}$), g being the acceleration of gravity and has a dimensionless constant.

2- Deduce the expression of T.

Exercise 4

Check the homogeneity of the following expressions:
Here are three hourly equations describing the movement of an object in which: x designates the distance traveled, v the speed, a the acceleration, t the time

$$
x=v \sqrt{t} \quad x=v t+\frac{1}{2} a t^{2} \quad x=v t+2 a t^{2}
$$

Here are three expressions for the period of revolution of a satellite orbiting the planet Mercury where m represents the mass of mercury and r the radius of the circular orbit of the satellite

DIMENSIONAL EQUATIONS, UNITS AND UNCERTAINTIES

$$
T=2 \pi \sqrt{\frac{r}{G m}} \quad T=2 \pi \sqrt{\frac{G m}{r^{3}}} \quad T=2 \pi \sqrt{{\frac{r^{3}}{G m}}^{3}}
$$

Determine by the dimensional analysis method the correct expression for the period, knowing that G has the dimension $\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2}$.

Exercise 5 (Work home)

Experience has shown that the speed v of sound in a gas is a function only of the density of the gas ρ and of its compressibility coefficient χ. It is given by $=k \rho^{x} \chi^{y}$. It is recalled that χ is homogeneous on the inverse of a pressure; k is a dimensionless constant. Determine the relationship of the speed of sound v.

Exercise 6

The moment of inertia I (its unit in the international system $\mathrm{Kg} . \mathrm{m}^{2}$) of a homogeneous tube with respect to its axis is given by the following relation

$$
I=\frac{1}{12} \rho^{\alpha} \cdot x \cdot y^{\beta} \cdot z \cdot\left[x^{2}+y^{\gamma}\right]
$$

x represents the length of the tube, y its width, z its thickness and ρ its density
Determine the value of the exponents α, β and γ and give the final expression of the moment of inertia
What is the accuracy on I if $\frac{\Delta x}{x}=\frac{\Delta y}{y}=\frac{\Delta z}{z}=\mathbf{1 0}^{-3}$ et $\frac{\Delta \rho}{\rho}=\mathbf{1 0}^{-2}$

Exercise 7

In order to find the average speed of a mobile on an air cushion table, a student measures the distance d traveled during a time interval t . he finds $\mathrm{d}=(5.10 \pm 0.01) \mathrm{m}$ et $\mathrm{t}=(6.02 \pm 0.02) \mathrm{s}$. the uncertainties are independent.

1- What is the value of the velocity V as well as its absolute uncertainty $\Delta \mathrm{V}$?
2- What is the real value of the momentum of the mobile $(p=m . V)$, knowing that its mass is : $\mathrm{m}=(0.711 \pm 0.002) \mathrm{kg}$.

Exercise 8

The torsion constant C of a metal wire of circular cross section (its unit in SI is $\mathrm{kg} . \mathrm{m}^{2} / \mathrm{s}^{2}$) is expressed as a function of its length 1 and its diameter d by the relation :C $=\mathbf{Y}^{\mathbf{a}} \frac{\mathbf{d}^{\mathbf{b}}}{l}$
Où Y is the torsion modulus (or Coulomb coefficient) characterizing the nature of the wire. Knowing that Y is homogeneous at a pressure.

1- Calculate the exponents a and b.et give the final expression of C .
2- Literally calculate the accuracy on C.

Exercise 9

The height H of a liquid of mass M contained in a cylinder of radius R is given by the relation: $H=\frac{2 \sigma \cos \alpha}{\rho . g R}$
Where α is the liquid-cylinder contact angle and ρ represents the density of the liquid and g the acceleration of gravity.

1. Find the dimension of the quantity σ.
2. Find the expression for the relative uncertainty on σ as a function of $\Delta \mathrm{R} ; \Delta \mathrm{g} ; \Delta \mathrm{M}$ et $\Delta \alpha$.
