

TD Sheet N°01 of Chemistry 1

Exercise 1

Which of the following samples has the greatest mass of iron (Fe)?

0.2 Moles $Fe_2(SO_4)_3$; 38g of iron; 0.3 atom-gram iron; 7 x10²³ iron atoms; 3.8 mols of iron

Data: $M(Fe) = 56 \text{ g.mol}^{-1}$; $M(S) = 32 \text{ g.mol}^{-1}$; Avogadro number $N_A = 6.022$. 10^{23} mol^{-1}

Exercise 2

We completely dissolve 3.5 g of NaCl in 125 mL of water with a mass density of 0.998 g/ml. This produces an aqueous solution of sodium chloride of 126.5 mL.

1- What is the mass percentage of NaCl in this solution?

2- What is the mole fraction of NaCl in this solution?

3- What is the molality of NaCl?

4- What is the molar concentration of NaCl?

M(Na): 23g/mole; M(Cl): 35.5g/mole.

Exercise 3.

What do A, Z, and q mean for the element ${}^{A}_{Z}X^{q}$?

What are the numbers of neutrons, protons, and electrons present in each of the following atoms or ions? ${}_{25}^{55}Mn$; ${}_{18}^{40}Ar$; ${}_{42}^{96}Mo$; ${}_{22}^{48}Ti$; ${}_{9}^{19}F$; ${}_{82}^{207}Pb^{2+}$; ${}_{35}^{80}Br^{-}$; ${}_{51}^{122}Sb^{3+}$; ${}_{15}^{31}P^{3-}$; ${}_{12}^{24}Mg^{2+}$; ${}_{34}^{79}Se^{2-}$ Are there any isotopes, isotones, or isobars among these 11 nuclides? (Isobars = elements with the same A and a different Z. Isotones = elements having the same number of neutrons).

Exercise 4

1- An oxide sample of copper CuO has a mass m = 1.59 g. How many moles and molecules of CuO, and atoms of Cu and O are there in this sample? M(Cu)= 63.54g.mol-1; M(O) = 16 g.mol.

a) How many moles are there in 40.1 g of MgSO₄.

b) How many grams are there in 0.4 moles of CaCO₃.

c) Calculate the mass in grams of $3,62 \ 10^{24}$ zinc atoms and $6,02 \ 10^{21}$ water molecules.

d) In 0.6 moles of CO_2 , how many grams and molecules of CO_2 are there?

Deduce the number of carbon and oxygen atoms.

Data: Mg = 24, S = 32, O = 16, Ca = 40, Zn = 65.37, C = 12; H = 1.

Exercise 5

The naturally occurring element silicon Si (Z=14) is a mixture of three stable isotopes: 28 Si, 29 Si and 30 Si. The natural abundance of the most abundant isotope is 92.23%. The atomic molar mass of natural silicon is 28.085 g mol⁻¹

28.085 g.mol⁻¹.

1. Which is the most abundant silicon isotope?

2. Calculate the natural abundance of the other two isotopes.

Exercise 6

Consider a monoatomic ion made up of 8 protons, 8 neutrons and 10 electrons.

 1°) Is this ion an anion or a cation? 2°) What is the charge of this ion? 3°) Deduce this ion's symbol.

4°) Deduce the symbol of the corresponding atom.

5°) Repeat the previous questions for an ion made up of 13 protons, 14 neutrons and 10 electrons.

Exercise 7

The masses of the proton, neutron and electron are 1, 6726485.10^{-24} g , $1.6749543.10^{-24}$ g and $9.109534.10^{-28}$ g respectively. a) Define the atomic mass unit (a.m.u.). Give its value in g to the same significant figures as the masses of particles of the same order of magnitude. b) Calculate in a.m.u., and to the nearest 10^{-4} , the masses of the proton, neutron and electron. c) Calculate from Einstein's relation (mass-energy equivalence) the energy content of one a.m.u. expressed in MeV. (Avogadro number: $6.022045.10^{23}$)

Exercise 8

1- Specify the composition of a nucleus of the uranium isotope 235 with symbol $^{235}_{92}U$

2- Calculate the mass defect of this nucleus, in atomic mass units and then in kilograms.

Mass of the uranium 235 nucleus: m $\binom{235}{92}U$ = 234.99332 amu; Mass of the neutron mn = 1.00866 amu Mass of proton mp = 1.00728 amu; 1 amu = 1.66 10⁻²⁷ kg.

3- Calculate, in joules and then in MeV, the binding energy of this nucleus.

 $1 \text{ eV} = 1.6 \ 10^{-19} \text{ J}$; $c = 2,9979. \ 10^8 \text{ m} / \text{ s}$

4- Calculate the binding energy per nucleon of this nucleus.

5- Compare the stability of the uranium 235 nucleus with that of the radium 226 nucleus, whose binding energy is 7.66 MeV per nucleon.