Définition 4.1.2 Si la suite $(\sum_{i=1}^n u_i)$ admet une limite, on dit que la série (1) est convergente. La limite de série $(\sum_{i=1}^n u_i)$ est appelée somme de la série (1) et est notée $\sum_{n=0}^{+\infty} u_n$. Dans le cas contraire, on dit que la série diverge.

Exemple 4.1.1 (Série géométrique)

Considérons le terme général de cette série donné par : $u_n = aq^n \ (a \neq 0)$. La somme partielle est donnée par :

 $s_n = \sum_{i=1}^n aq^i = a \frac{1-q^n}{1-q}, \ (q \neq 1).$

La série $(\sum_{n\geqslant 0}u_n)$ est convergente ssi |q|<1, et sa somme vaut $\frac{a}{1-q}$, et divergente ssi $|q|\geqslant 1$.

4.1.2 Condition nécessaire de convergence d'une série

Théorème 4.1.1 Si une série converge, son terme géénéral tend vers zéro lorsque n tend vers l'infini.

Exemple 4.1.2 Soit la série $:1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^n}+\cdots=\sum_{n\geqslant 0}\frac{1}{2^n}$. Le terme général $u_n=\frac{1}{2^n}$. Il est clair que cette série est une série géométrique convergente, car $q=\frac{1}{2}\in]-1,1[$. Et on $a:\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}\left(\frac{1}{2^n}\right)=0$.

Corollaire 4.1.1 Si le terme général u_n d'une série ne tend pas vers zéro lorsque n tend $vers +\infty$, la série diverge.

Exemple 4.1.3 La série $\frac{1}{3} + \frac{2}{5} + \frac{3}{7} + \dots + \frac{n}{2n+1} + \dots$ diverge, $car \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{2n+1} = \frac{1}{2} \neq 0$.

4.1.3 Séries à termes positifs

Définition 4.1.3 Une série $\left(\sum_{n\geqslant 0}u_n\right)$ est dite à terme positifs si $u_n\geqslant 0$ pour tout $n\in\mathbb{N}$.