

جامعة محمد بن أحمد - وهران 2 - كلية العلوم الاقتصادية، التجارية وعلوم التسيير

السداسي الثاني 2019 - 2020

السنة الأولى ليسانس

حل التطبيق رقم: 4 في مادة الإحصاء 2

الأرقام القياسية Les indices

حل التمرين الأول: نقوم بإعداد الجدول:

المواد	P ₂₀₀₅	Q 2005	P ₂₀₁₀	Q ₂₀₁₀	P ₂₀₁₀ .Q ₂₀₀₅	P ₂₀₁₀ .Q ₂₀₁₀	P ₂₀₀₅ .Q ₂₀₀₅	P ₂₀₀₅ .Q ₂₀₁₀
X	10	6	30	6	180	180	60	60
Υ	20	5	50	7	250	350	100	140
Z	5	9	15	7	135	105	45	35
Σ	35		95		565	635	205	235

سنة المقارنة = 2010

سنة الأساس = 2005

1- الرقم القياسي التجميعي البسيط للأسعار:

$$IP_{2010/2005} = \frac{\sum P_{2010}^{i}}{\sum P_{2005}^{i}} \times 100$$

حيث أن i تمثل عدد المواد

مجموع أسعار المواد الثلاثة لسنة المقارنة $\sum P^{i}_{2010}$

مجموع أسعار المواد الثلاثة لسنة الأساس $\sum P^{i}_{2005}$

$$IP_{2010/2005} = \frac{95}{35} \times 100 = 271,42\%$$

التقسير : إن أسعار المواد الثلاثة ارتفعت بمقدار :

(100-271,42) =171,42 من السنة 2005 إلى السنة 2010.

: x منسوب السعر للسلعة x عناه الرقم القياسي البسيط للسعر للسلعة الله الرقم القياسي البسيط للسعر للسلعة المناه الم

$$I(P)_{2010/2005}^{x} = \frac{P_{2010}^{x}}{P_{2005}^{x}} \times 100$$

$$I(P)_{2010/2005}^{x} = \frac{30}{10} \times 100 = 300\%$$

سعر السلعة x ازداد أي ارتفع ب:

2010-300 بين سنتي 2005 و 2010

: y منسوب السعر للسلعة y معناه الرقم القياسي البسيط للكميات للسلعة الله المناعة المناعة المناعة السلعة المناعة المناع

$$I(Q)_{2010/2005}^{y} = \frac{Q_{2010}^{y}}{Q_{2005}^{y}} \times 100$$

$$I(Q)_{2010/2005}^{y} = \frac{7}{5} \times 100 = 1,4 \times 100 = 140\%$$

كمية السلعة y ارتفعت ب:

140- 100= 40 بين سنتي 2005 و 2010

4-لاسبيرز للأسعا<u>ر:</u>

أي الرقم القياسي لاسبيرز للأسعار المرجح بكميات سنة الأساس

Laspeyres des Prix

$$L(P)_{2010/2005} = \frac{\sum P_{2005}^{3} Q_{2005}^{3}}{\sum P_{2005}^{3} Q_{2005}^{3}} \times 100$$

3 هو عدد المواد

$$L(P)_{2010/2005} = \frac{565}{205} \times 100 = 275,609$$

باش للأسعار:

أي الرقم القياسي باش للأسعار المرجح بكميات سنة المقارنة Paasche des prix

$$P(P)_{2010/2005} = \frac{\sum P_{2010}^{3} Q_{2010}^{3}}{\sum P_{2005}^{3} Q_{2010}^{3}} \times 100$$

$$P(P)_{2010/2005} = \frac{635}{235} \times 100 = 270,212$$

لاسبيرز للكميات:

أي الرقم القياسي لاسبيرز للكميات المرجح بأسعار سنة الأساس

Laspeyres des Quantités

$$L(Q)_{2010/2005} = \frac{\sum P_{2005}^{3} Q_{2010}^{3}}{\sum P_{2005}^{3} Q_{2005}^{3}} \times 100$$

3 هو عدد المواد

$$L(Q)_{2010/2005} = \frac{235}{205} \times 100 = 114,634$$

* باش للكميات :

أي الرقم القياسي باش للكميات المرجح بأسعار سنة المقارنة

Paasche des Quantités

$$P(Q)_{2010/2005} = \frac{\sum P_{2010}^{3} Q_{2010}^{3}}{\sum P_{2010}^{3} Q_{2005}^{3}} \times 100$$

3 هو عدد المواد

$$P(Q)_{2010/2005} = \frac{635}{565} \times 100 = 112,389$$

<u>5- الرقم القياسي الأمثل لفيشر</u>

Fisher des Prix

- فيشر للأسعار

$$F(P)_{2010/2005} = \sqrt{L(P) \times P(P)}$$

$$F(P)_{2010/2005} = \sqrt{275,609 \times 270,21} = 272,896$$

Fisher des Quantités

- فيشر للكميات

$$F(Q)_{2010/2005} = \sqrt{L(Q) \times P(Q)}$$

$$F(Q)_{2010/2005} = \sqrt{114,634 \times 112,389} = 113,505$$

ملاحظة:

- إن الرقم القياسي الأمثل لفيشر هو عبارة عن الوسط الهندسي للرقمين القياسيين لكل من الاسبيرز

و باش.

- الرقم القياسي لفيشر محصور بين رقمي لاسبيرز و باش.

 $P\langle F\langle L$

$$P(P)\langle F(P)\langle L(P)$$
 بالنسبة للأسعار

270,12(272,896(275,609

$$P(Q)\langle F(Q)\rangle\langle L(Q)$$
 بالنسبة للكميات

112,389(113,505(114,634

حل التمرين الثاني:

1- حساب كميات سنة المقارنة: (2009)

لدينا منسوب الكميات أي الرقم القياسي البسيط للكميات:

Indice élémentaire des Quantités

$$I(Q)_{2009/2006} = \frac{Q_{2009}}{Q_{2006}} \times 100$$

 $Q_{\scriptscriptstyle 2009}$ نحن نبحث عن كميات سنة المقارنة

$$\Rightarrow Q_{2009} \times 100 = I(Q)_{2009/2006} \times Q_{2006}$$

$$\Rightarrow Q_{2009} = \frac{I(Q)_{2009/2006} \times Q_{2006}}{100}$$

بالنسبة للسلعة x عميات Quantités

$$Q_{2009}^{x} = \frac{I(Q)_{2009/2006}^{x} \times Q_{2006}^{x}}{100}$$

$$\Longrightarrow Q_{2009}^{x} = \frac{100 \times 5}{5} = 5$$

$$\Rightarrow Q_{2009}^x = rac{100 imes 5}{100} = 5$$
 كمية المادة x في سنة المقارنة

بالنسبة للسلعة y عميات Quantités

$$\Rightarrow Q_{2009}^{y} = \frac{150 \times 4}{100} = 6$$

كمية المادة y في سنة المقارنة

بالنسبة للسلعة z كميات Quantités

$$\Rightarrow Q_{2009}^z = \frac{75 \times 8}{100} = 6$$

كمية المادة z في سنة المقارنة

2- حساب أسعار سنة الأساس : (2006)

Indice élémentaire des Prix

نستخدم نفس الطريقة

$$I(P)_{2009/2006}^{i} = \frac{P_{2009}^{i}}{P_{2006}^{i}} \times 100$$

$$\Rightarrow P_{2006}^{i} = \frac{P_{2009}^{i}}{I(P)_{2009/2006}^{i}} \times 100$$

بالنسبة للسلعة x : أسعار

$$\Rightarrow P_{2006}^{x} = \frac{30}{300} \times 100 = 10$$

سعر المادة x في سنة الأساس

بالنسبة للسلعة y : أسعار Prix

$$\Longrightarrow P_{2006}^{y} = \frac{50}{250} \times 100 = 20$$

سعر المادة y في سنة الأساس

بالنسبة للسلعة z أسعار Prix

$$\Longrightarrow P_{2006}^{z} = \frac{15}{300} \times 100 = 5$$

سعر المادة z في سنة الأساس

ملاحظة:

السلعة أو المادة تعني نفس الشيء.

حل التمرين الثالث:

نقوم بإعداد الجدول باستخدام 0 سنة الأساس و t سنة المقارنة:

	السنة 0		السنة t					
السلع	P ₀	Q_0	Pt	\mathbf{Q}_{t}	$P_0.Q_0$	$P_t.Q_0$	$P_t.Q_t$	$P_0.Q_t$
Α	12	60	3	50	720	60P _{tA}	50P _{tA}	600
В		35	22	30	35P _{0B}	770	660	30P _{0B}
С	50	5	58	15	250	290	870	750
Σ					970 + 35P _{0B}	1060 + 60P _{tA}	1530 + 50P _{tA}	1350 + P _{0B}

1- لاسبيرز للكميات

Laspeyres des Quantités

$$L(Q)_{t/0} = \frac{\sum P_0^i Q_t^i}{\sum P_0^i Q_0^i} \times 100$$

$$\Rightarrow$$
 116,766 = $\frac{1350 + 30 P_{0B}}{970 + 35 P_{0B}} \times 100$

$$11326302 + 408681 \times P_{0B} = 1350 + 3000 \times P_{0B}$$

$$\Rightarrow P_{0B} = 20$$

سعر السلعة B في سنة الأساس 0

باش للكميات

Paasche des Quantités

$$P(Q)_{t/0} = \frac{\sum P_t^i Q_t^i}{\sum P_t^i Q_0^i} \times 100$$

$$\Rightarrow 122,289 = \frac{1530 + 50 \, P_{tA}}{1060 + 60 \, P_{tA}} \times 100$$

$$12962634 + 7337,34 \times P_{tA} = 15300 + 5000 \times P_{tA}$$

$$\Rightarrow P_{tA} = 10$$

سعر السلعة A في سنة المقارنة t

2- الرقم القياسى الأمثل هو رقم فيشر

بما انه لدينا أرقام لاسبيرز و باش للكميات فإن الرقم القياسي الأمثل المناسب هو رقم فشر للكميات :

Fisher des Quantités

$$F(Q)_{2010/2005} = \sqrt{L(Q) \times P(Q)}$$

$$\Rightarrow F(Q)_{2010/2005} = \sqrt{116,766 \times 112,289} = 119,495$$

حل التمرين الرابع:

لتحديد القدرة الشرائية للعملة نقسم وحدة واحدة من هذه العملة على الرقم القياسي للأسعار الاستهلاكية:

$$100 imes \frac{1}{100}$$
قيمة الدينار الجزائري $= \frac{1}{100}$

Pour l'année 1986 بالنسبة لسنة =
$$\frac{1}{100} \times 100 = 1$$
Pour l'année 1987 بالنسبة لسنة = $\frac{1}{104,2} \times 100 = 0,959$

هذا معناه أن قيمة الدينار الجزائري أي القيمة الشرائية انخفضت في سنة 1987. و هكذا نحصل على الجدول التالي:

السنوات	1986	1987	1988	1989	1990	1991	1992	1993	1994
قيمة الدينار	1	0,959	0,910	0,859	0,824	0,798	0,751	0,677	0,62

إذن نلاحظ أن قيمة الدينار الجزائري في تناقص من سنة إلى أخرى و هذا يرجع إلى ارتفاع أسعار المواد الاستهلاكية.

ومنه فإن دينار واحد لسنة 1994 لا يساوي دينار واحد لسنة 1986 بل يمثل 0,62 من دينار 1986.

حل التمرين الخامس:

نرمز لمعدل نمو السعر، معدل نمو الكمية المباعة و معدل نمو القيمة الإجمالية بالرموز التالية :

$$i^p = 1$$
 معدل نمو السعر i^p

$$0.15 = 15\% = 15\%$$
 معدل نمو الكمية = i^{Q}

$$0.30 = 30\%$$
 = معدل نمو القيمة الإجمالية معدل نمو القيمة الإجمالية

إذا ضربنا الرقم القياسي للأسعار (I(P) في الرقم القياسي للكميات (I(Q) نحصل على الرقم القياسي للقيمة الإجمالية (I(VG):

$$I(VG) = I(P) \times I(Q)$$

و لدينا أيضا الرقم القياسي هو معدل النمو زائد واحد أي :

$$I = i + 1$$

$$\frac{I(VG) = I(P) \times I(Q)}{I = i + 1} \Longrightarrow I(P) = \frac{I(VG)}{I(Q)} = \mathbf{i}^{P} + 1$$

الرقم القياسي للأسعار:

$$|I(VG) = \mathbf{i}^{VG} + 1 = 0,3 + 1 = 3,1 I(Q) = \mathbf{i}^{Q} + 1 = 0,15 + 1 = 1,15$$
 $\Rightarrow I(P) = \frac{I(VG)}{I(Q)} = \frac{1,3}{1,15} = 1,1304$

$$I(P) = \mathbf{i}^p + 1$$
 بما أن

$$\Rightarrow i^p = I(P) - 1 = 1,1304 - 1 = 0,1304$$

$$\Rightarrow$$
 $m{i}^p = 0.1304 imes 100 = 13.04\%$ معدل نمو سعر المادة هو:

حل التمرين السادس:

1- الرقم القياسي للعمالة أي الرقم القياسي للكميات :

Indice de l'emploi = Indice des Quantités

$$I(Q)_{Aout/Janvier} = \frac{Q_{Aout}}{Q_{Janvier}} \times 100 = \frac{120 + 30}{120} \times 100$$

$$I(Q)_{Aout/Janvier} = 125\%$$

هذا يعني أن العمالة Emploi قد ازدادت بنسبة (100-125)=%=25% في شهر أوت مقارنة بشهر يناير (جانفي).

2- الرقم القياسى لتكلفة العملية أي الرقم القياسى للقيمة الإجمالية:

$$I(VG)_{Aout/Janvier} = \frac{VG_{Aout}}{VG_{Janvier}} \times 100 = \frac{1500000 + 225000}{1500000} \times 100$$

$$I(VG)_{Aout/Janvier} = 115\%$$

هذا يعني أن القيمة الإجمالية (VG) للأجور المدفوعة قد ازدادت بنسبة 15% = (100-115).

3- الرقم القياسى للسعر:

Indice des Prix

$$I(P)_{Aout/Janvier} = I(Q)_{Aout/Janvier} = I(VG)_{Aout/Janvier}$$

$$\Rightarrow I(P)_{Aout/Janvier} = \frac{I(VG)_{Aout/Janvier}}{I(Q)_{Aout/Janvier}} = \frac{115}{125} = 0.92$$

$$\Longrightarrow I(P)_{Aout/Janvier} = 92\%$$

إن التفسير الذي يمكن إعطاؤه لهذه النتيجة هو أن سعر العمالة قد انخفض بنسبة 8% = (92-100) = 8% في شهر أوت 2009 عما كان عليه في شهر يناير (جانفي) .2009.

أساتدة المادة ا

الأستاذة المحاضرة:

– شنوف ص. <mark>منسق المادة</mark>

- سليماني ر.

- قنصاب ح. م.

کیحل م.ر.

أستاذة التطبيق:

صقال – محجوب ح.

- جنان-شنوف ح. - بلعباسي ن.

بن عودة ۱.
 صايم ط.

شايمي ي.كمال و.

– خلیفة ح.– بوعلي ر.

بوکروس ج.اوي ل.